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Several combinatorial factors entering into expressions for the distributions of molecular sizes 
in random polyfunctional condensations have been derived, including cases treated previously 
by Stockmaycr and Flory. The simple method used in thcse derivations seems capable of 
extension to other related problems. 

1 INTRODUCTION 

Morqthan thirty years ago Stockmayer' noted the formal and physical 
analogy between the process of condensation of saturated vapor to form a 
liquid and the reversible gelation which occurs during random polymeriza- 
tion of polyfunctional monomers. The similarity of vapor condensation and 
polymer gelation has since been successfully exploited by Gordon er aL2who 
described the process of saturation and precipitation of water in a dilute 
solution in benzene by means of the Flory-Stockmayer molecular size 
distribution expression, derived for a random polymerization process. 
Recently, the condensation-gelation analogy has been explored still further 
by Cohen, Gibbs, and Fleming4 who related Stockmayer's purely statisti- 
cal independent variable a (corresponding to the extent of polymerization) 
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208 M. FALK A N D  G .  C. MARCOTTI: 

to the thermodynamic variables, temperature and density, used to describe 
vapor condensation. These authors’ clarification of Stockmayer’s analogy4 
is likely to bring about a wider use of the polymer-theory treatments of the 
Flory-Stockmayer type to problems related to liquid state, particularly in 
connection with the structure of liquid water.5 

The distribution of molecular sizes in random processes of reversible 
polyfunctional polymerization (or condensation, for we will use these terms 
interchangeably) is therefore of some current interest. In deriving expres- 
sions for the most probable distribution of molecular sizes in the various 
possible types of such condensation, the most difficult part of the derivation 
is the evaluation of the combinatorial factor. Below we obtain several such 
factors by means of an elementary and, apparently, novel derivation which 
appears to be of fairly general applicability. 

2 SELF-CONDENSATION OF I DENTICAL POLYFUNCTIONAL 
MONOMERS 

Derivation of W, 

We shall first be concerned with the quantity W,, defined :is the number of 
ways in which x indistinguishable polyfunctional monomeric units (residues), 
each bearing f indistinguishable equivalent bonding sites, capable of form- 
ing inter-site bonds, can be combined into a “ringless x-mer”, i.e. into a 
single polymeric molecule consisting of x residues and x -- I bonds. 

Consider a process of generation of a polymer, in which we start with a 
residue with itsfsites “on trial”. We proceed with a sequence of “successes” 
and “failures”, where a success corresponds to a site being bonded while a 
failure corresponds to a site being non-bonded. Every failure removes one 
site while every success adds f - 2 new sites, as there areJnew sites on the 
residue being added, but one new and one old site are used up in the bond. 
A ringless x-mer contains x - 1 bonds andfx - 2x + 2 non-bonded sites. 
Hence a sequence generating a ringless x-mer must consist of x - 1 successes 
andfx - 2x + 2 failures. The total number of distinct sequences of x - 1 
successes and fx - 2x + 2 failures out of (x - 1) + (fx - 2x + 2) =fx - x + 1 
trials is simply the binomial expression: 

.=( f x - x + l  ) =  ( f x  - x + I ) !  
x - 1  ( x  - I ) !  ( f x  - 2 x  + 2:; 

We see immediately that not all such sequences correspond to ways of 
generating an x-mer. For example, in the case o f f=  3, x == 2, thesequence 
- - + - - (where pluses denote successes, i.e. bonded sites, and minuses 
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THE COMBMATORIAL FACTORS 209 

denote failures, i.e. non-bonded sites) corresponds to one of the ways of 
generating a dimer, while the sequence - - - + - does not, as the three 
failures at the beginning exhaust the available sites on the original residue. 
Clearly, a proper sequence generating an x-mer runs out of sites at the end 
of the sequence and not before. 

We must derive the relation between the number of proper sequences 
generating an x-mer, W,, and C,, which is the total number of sequences 
of x - 1 successes and fx - 2 x  + 2 failures. To do this we consider an 
arbitrary sequence of x - 1 successes and fx - 2x  + 2 failures, which may 
be illustrated by the sequence: 

(2 )  

for which f = 4, x = 6, x - 1 = 5 ,  and fx - 2 x  + 2 = 14. If we regard the 
sequence in (2) as cyclic, i.e. envisage the last element of thesequence to be 
followed immediately by the first element, then every success may be con- 
sidered to be “neutralized” by f - 2 subsequent failures, with exactly f 
“unneutralized” failures being left over. These unneutralized failures are 
uniquely determined for any given sequence and may be discovered by the 
following bracketing procedure: 

Bracket together every subsequence of a success followed immediately by 
f - 2 failures. Consider all symbols within brackets as neutralizedanddisregard 
them. Continue the bracketing process until the x - 1 successes have been uni- 
quely bracketed with ( x  - 1)cf - 2 )  = fx  - 2 x  + 2 - f failures, andexactly 
f failures remain outside of all brackets 

- - - - + - - - + + - - - - - + - + -  

When applied to the sequence (2), the above procedure yields: 

(3 ) 2 ) - ) *  ’ (+  - - ) * (  + ( +  - - ) -  - ) * (  + - (  + 
where the f = 4 unneutralized failures, left outside of brackets, have been 
marked by asterisks. In the block of fx - x + 1 sequences generated by the 
cyclic permutations of an arbitrary sequence of x - 1 successes and 
fx - 2x + 2 failures there will bef sequences ending with one of the un- 
neutralized failures. These sequences are all proper, because passing through 
any number of complete brackets has no net effect on the number of sites, 
so that we just run out of the original f sites at the fth encounter of an un- 
neutralized failure, which is at the endof the sequence. On the other hand, 
the sequences ending with one of the symbols inside a bracket cannot be 
proper, because such a sequence must run out of the original f sites before 
the end of the sequence. Hence, in every such block there must be exactly 
fproper sequences out of a total of fx - x + 1. Iffand x - 1 have a common 
factor, certain blocks of cyclically permuted sequences may split into several 
identical sub-blocks. In that case, in each such sub-block the ratio ofproper 
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210 M. FALK AND G. C.  MARCOTTE 

sequences to the total is alsof/(/x - x + 1). Therefore, the same fraction 
must also apply to the total set of C, possible sequences, so that 

f ( f x  - x ) !  
( x  - I ) !  ( f x  - 2 x  t 2 ) ! .  

w, = f c, = 
f x  -. x t 1 

(4) 

The expected number of ringless x-Mers N, 

We may now derive the limiting distribution expression for ringless x-mers in 
a system which initially contained No monomeric units (NO -+ oo), and which 
had undergone a process of random bonding between pairs of sites until the 
fraction a of all sites became bonded. This regime corresponds to the rings 
allowed model defined and discussed in Ref. 6 .  The probability that any site 
encountered along the polymer is bonded or non-bonded must be aor I - a, 
respectively. As x - I bonded sites and f x  - 2 x  + 2 non-bonded sites are 
encountered in the generation of an x-mer, the probability that a residue 
selected at random belongs to a ringless x-mer (neglecting the possibility of 
ring formation, which will be discussed in Section 4) musi be 

( 5 )  p ,  = w, (1  - - 2 1  + 2 *  

But P, is also equal to the weight-fraction of x-mers in the system, x N x / N o ,  
where N ,  is the expected number of x-mers in the system. Thus 

N ,  = P, N d x .  (6) 
From (4), ( 5 )  and (6) we obtain 

Q'- l ( l  - 4 / x - 2 , + :  A f x  - x ) !  
x!(Jx - 2x t 2 ) !  

N,  = NO (7) 

which is the well-known Flory-Stockmayer expression. Several alternative 
derivations of this equation have been reported,' but the simplicity of the 
present one makes it particularly suitable for extension to a variety of new 
cases, some examples of which are shown below. 

3 SELF-CONDENSATION OF A MIXTURE OF 
POLYFUNCTIONAL MONOMERS 

Derivation of W,,x 

We now consider a system which initially contains a mixture of n types of 
monomeric units (residues) which contain bonding sites of the same type and 
of equal reactivity. The number of such sites on the residue. of the i-th type is 
1;.. The system undergoes random formation of inter-site bonds as before, 
until the fraction a of all sites have become bonded. A typical polymer will 
now contain x i  residues of the i-th type, and will be referred to as an x-mer, 
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THE COMBINATORIAL FACTORS 21 1 

where x = (x, , x 2 ,  . . . , xn). The detailed geometry and the internal relation- 
ships between the residues making up the x-mer will bedisregarded. Wewish 
to derive W,,,, the number of distinct ways of starting with aj-th type residue 
and generating a ringless x-mer. In thegenerating processwemust encounter 
x i  bonds to a residue of the i-th type ( i  = 1.2, . . . n; i # j ) ,  xJ = 1 bonds to a 
residue of thej-th type, and 

u = Z X J ;  - 2 e x 1  -+ 2 (9) 
non-bonded sites for a total of Z1;.x, - Zx, + 1 events or trials. t These events 
are of n + 1 types: n types of “successes”, corresponding to the addition of 
one of the n types of residues, and a “failure”, corresponding to a site being 
found non-bonded. The total number of distinct sequences of these events is 
now the multinomial expression 

( Z J X 1  - e x ,  t l ) !  
(XI - I ) !  n X I !  u !  c,,x = 

I + J  

(9) 

with u given by Eq. 8 and the expression obtained representing ageneraliza- 
tion of Eq. 1. 

Again, not all of such sequences correspond to realizable ways of generat- 
ing an x-mer. The relation between Wj,, and Cj,x can be discovered by con- 
sidering the block of sequences derived by cyclic permutations of an arbitrary 
sequence having the appropriate number of failures and successes of the 
various types. Every success of the i-th type can be considered to be neutral- 
ized by/;. - 2 subsequent failures. A bracketing procedure analogous to the 
one in the preceding section reveals exactly Junique unneutralized failures. 
Again, the necessary and sufficient condition for the sequence being 
“proper”, i.e. corresponding to a feasible process of generation of an %mer, 
is that the sequence should end with such an unneutralized failure. 

Consequently, the number of proper sequences in every block of Z1;xi - 
,Xxi + 1 cyclically related sequences isf;., and the fraction of sequences which 
are proper, within each block and thus also for the complete set of sequences 
is 

from which we obtain 

(XI - l ) !  n X I !  ( Z f ; x ,  - 2ZXf  + 2 ) ! .  wJ,X = 

‘fJ 

Eqs. 10 and 1 1  are generalizations of Eq. 4. 

+All sums (Z) and products (IJ) will be assumed to extend over i = 1,2,. . . ,n, unless other- 
wise indicated. 
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21 2 M. FALK A N D  G.  C. MARCOTTE 

The expected number of ringless X-mers, N, 

From (1 1)  we may derive the limiting distribution expression for x-mers 
without rings. If the system contained No; residues of type i, then, provided 
that the reaction has proceeded at random and that all N o ,  + 03, the prob- 
ability that a given site is bonded to a group on a residue of the i-th type must 
be 

and the probability that it is unreacted must be 1 - Ca; = 1 - a. Therefore, 
the probability that a residue of the j t h  type, selected at  random, belongs to 
an x-mer without rings is 

P,,~ = w,,~ aJx~-' ( n  a:!)(] - a)". (12) 
I f /  

But the expected number of ringless x-mers in this system, in analogy with 
Eq. 6 is 

Nx = P1.x Noj/xj .  (13) 
Eliminating P,,* from Eqs. 12 and 13, and substituting W,,,from Eq. 11, we 
obtain: 

Eq. 14 represents the generalization of the Flory-Stockmayer expression 
(Eq. 7) for the polymerization of a mixture of n types of self-condensing 
monomer. The special case of n = 2,J = f andf i  = 2 gives 

x a x , + x z - I  ( 1  - a ) f x l - 2 x , + 2  (15 

which is equivalent to the expression given by Flory in Ref. 3, page 395. 

4 CONDENSATION OF MONOMERS BEARING 
COMPLEMENTARY REACTIVE SITES 

Derivation of VV: 

We now consider a system initially containing a mixture of monomers of twc 
types, one which bears fA bonding sites of type A and another which bearsf; 
bonding sites of type B. The system undergoes random formation of bonds of 
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THE COMBINATORIAL FACTORS 213 

type A . . . B, but not A . . A or B - .  B. A representative ringless polymer, 
which we will call an x ,  ymer, will contain x residues of type A, y residues of 
type B, and x + y - 1 A . . B bonds. We wish to derive W:,, the number of 
distinct ways of starting with a residue of type A and generating a ringless 
x ,  y-mer. 

In the generating process we shall encounter y bonded A sites, designated 
+, and fAx  - x  - y + 1 non-bonded A sites, designated -, for a total of 

fAx - X  + 1 events disposing of the sites of type A. The total number of 
distinct sequences offAx - x + 1 events of which y are of one type and the 
remaining ones are of another type is 

We shall also encounter x - 1 bonded B sites, designated ? andfBy - x - 
y + 1 non-bonded B sites, designated =, for a total OffBy - yevents dispos- 
ing of the sites of type B. The total number of distinct sequences offBy - y 
events, of which x - 1 are of one type and the remainder are of another type, 
is 

The complete sequence of events associated with the generation of an x,  p 
mer may be considered to be composed of a (+, -)sequence combined with 
a (+ - -  , -) sequence. Since at the start of the generation process we only have 
sites of type A on trial, and sites of type B only appear after an event of type 
+ (i.e. after an addition of a residue of type B, withf, - 1 reactive sites on 
trial), a unique rule of the combination of the (+, -) and (k, -)sequences 
emerges: The combined sequence must begin with the no;-underlined 
sequence, which continues until an event of type + occurs. Each such event 
is then followed byf, - 1 events taken consecutively from the underlined 
sequence. Since the underlined sequence has the lengthfBy - y = (fB - l)y, 
and there are y events of type +, the total sequence is thus accounted for. 

For example, in the case fA = 3, fB = 4, x = y = 4, the non-underlined 
sequence - + - - + + - + - and theunderlinedsequence - - + - - - 
+ + - - -  - would be uniquely combined into 

The total number C& of sequences which have the required numbers ofthe 
four types of events for the generation of an x, ymer starting with a residue 
of type A, and which follow our rule for combination, must be the double 
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214 M. FA1.K A N D  G. C. MARCOTTE 

binomial expression 

As before, not all such combined sequences represent feasible ways of 
generating an x,  ymer. A proper combined sequence, corresponding to the 
generation of an x ,  ymer, must run out of A sites at thelast non-underlined 
event and out of B sites at the last underlined event and not before. 

To derive the relation between the number ofpropersequences, Wx"y, and 
the total number of sequences, CC,,, we consider an arbitrary combined 
sequence such as the one in (18). If this sequence is considered cyclic, then 
each of the x - 1 events of type - + may be bracketed together with the 
followingf, - 1 non-underlined events, t or -, ignoring any intervening 
events of type or any events previously enclosed in brackets. Applied to 
the sequence in (18) such bracketing procedure yields 

(20) 

Such a procedure must alwaysleave ( fAx -x + 1) - ( x  -l)(fA - 1)  =fn non- 
underlined symbols, either + or -, outside of the brackets; these are marked 
with asterisks in (20). Reasoning analogous to that in Section 2 shows that in 
a block off, x - x + 1 sequences generated by those cyclic permutations of 
an arbitrary sequence which start with one of the non-underlined symbols, 
the fA sequences which start with a starred symbol are proper, while all the 
remaining sequences are nor proper. Therefore the propc?r sequences con- 
stitute a fractionf,/f,x - x + 1 of every block and therefore also of the total 
set of C$ possible combined sequences. Thus 

3 c): = =(+ - -):I z: (+(+ 1 - +)I L 

Inserting the value of Cty from Eq. 19 we obtain 

(22)  V;\x - x)! UBY - Y ) !  
y !  u;X - x - y  t I ) !  (x - I ) !  - y - X f I ) ! .  w$ = f A  

The expected number of x, y-mers, N, 

We may now derive the limitingdistribution expression for x,y-mers without 
rings. Suppose that the system contained initially No,, monomers of typeA 
and NoB monomers of type B, and let NoA -+ co and NoB -+ 03. If the reaction 
has proceeded at random, with the fraction a, of A sites and the fraction aB 
of B sites having reacted, then the probability that a given site of type A has 
or has not reacted must be a, or 1 - a,, respectively. Similarly, the pro- 
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THE COMBINATORIAL FACTORS 21s  

bability that a given site of type B has or has not reacted must be respectively 
aB or 1 - aB. Considerations of stoichiometry show that the quantities aA 
and q, are related by 

(23) 

where a may be defined as the fraction of all sites, of either type A or type B, 
which have reacted. The probability that aresidue of type A, selected at ran- 
dom, belongs to an x, y-mer without rings is 

(24) 

But the expected number of ringless x,pmers in the system, by analogy with 
Eq. 6 is 

f A N O A  aA = f B N O B  aB = t U A N O A  + f B N O B ) a  

P& = IV; ( a A ) v ( I  - a A ) f A x - x - Y + I  (aB)x-l (1  - a B ) h y - y - x + l  

Nxy = P& N O A l x .  ( 2 5 )  

2 C f A N O A  + f B N o B ) x + y - I  c f A x  - x ) ! c / B y - Y ) !  X 

Combining Eqs. 21, 22, 23, and 24 we obtain 

( 2 f A  No, (2fe NoB )”- I y !  c f A X  - x - Y + I ) !  x !  C f B Y  - y - x + I ) !  N x y  = 

X a”+Y-l (1  - a A ) j A x - x - Y + ’  (1 - a B ) f B Y - Y - x + l  (26) 

which is a special case of distribution equation presented by Stockmayer 
(Eq. 2 in Ref. 8) without proof.? It has since been derived by Whittle by 
means of generating  function^.^ The generalization to a mixture of several 
types of monomers bearing sites of type A and several types of monomers 
bearing sites of type B is straightforward. 

4 R ING-CONTAINING POLYMERS 

Derivation of W, 

Finally, we return to the system of identical monomers described in Section 1 
and consider Wx,k, the number of ways in which x indistinguishable residues, 
each bearing f indistinguishable reactive sites can be combined into an 
“x, k-mer”, i.e. a single polymeric molecule containing xresidues and k ring 
closures,+ which implies the presence of x - 1 + k bonds. The detailed in- 

tEq. 2 in Ref. 8 contains a printing error: the last term should be raised to the power n, 
instead of m,. 

+As has been stated in an earlier paper,6 the number of ring closures corresponds to the 
cyclomric d e r  in graph theory.” The use of graph theory to describe multiatomic or 
multisegmented molecules has been advocated by Brostow ‘‘,I2 and Gordon 1 3 9 1 4  and their 
colleagues. I t  is possible that application of the more powerful graph-theoretical or generating- 
function techniques, outside the scope of the present elementary approach, could be used to 
obtain Wx,k for k > I .  
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216 M. FALK A N D  G .  C. MARCOTTE 

ternal geometry of the x ,  k-mer will be disregarded. In the generation of an x,  
k-mer we shall encounter a sequence of three types of events: (i)success, i.e. 
the formation of an ordinary bond, (ii) failure, i.e. encountering a non- 
bonded site, and ( 5 )  double failure, i.e. encountering an internal bond, 
which removes two reactive sites at once. These events must occur x - 1, 
f x  - 2 x  + 2 - 2k, and k times, respectively, the total number of events in the 
sequence being ( x  + 1) + V;r - 2 x  + 2 - 2k) + (k) = f x  -- x + 1 - k. 

The total number of distinct sequences of this type is given by the tri- 
nomial expression: 

/ x - - x +  1 - k  ( J x - x t  I -k)! 
- 1 f x  - 2 x  + 2 - 2 k  k ) =  ( x  - l ) !  (Jx - 2.r + 2 - 2k)! k!’ c x , k  = 

As before, we observe that not all such sequences correspond to the 
generation of an x ,  k-mer. To derive the relation between Wx,k and Cx,k 
we consider the block offx - x - k + 1 sequences derived by thecyclic 
permutations of an arbitrary sequence of x - 1 successes,fi - 2 x  - 2k + 2 
failures and k double failures. Every success in the sequence can be con- 
sidered to be neutralized by some combination of single and double failures 
adding up  to the value f - 2. A bracketing procedure analogous to that 
described in section 1 would discover again for each sequence a unique set 
of unneutralized single and double failures adding up to the valuef: (Any 
double failu :e “half-neutralized” in the bracketing procedure is sub- 
sequently ccunted as a single failure.) 

While the total value of the unneutralized single and double failures must 
always be J this can be variously made up by f - 2d single failures and d 
double failures where d is any integer between 0 andfl2. As before, the 
necessary and sufficient condition that a sequence be proper is that it should 
end on an unneutralized failure (or an unneutralized or half-neutralized 
double failure). Therefore, the number of proper sequences in a block may 
be equal tof,f- 1 , .  . .I-- I,wherethelastcasecorrespondstothemaximum 
number of unneutralized double failures, and 1 is the integral part of f / 2  
The relation of Wx,k and Cx.k must therefore be 

I 

i=O 
where .Z ,l = 1 and the coefficients Ai are proportional to the number of 

distinct cyclic blocks of sequences which yieldf - i “proper” sequences. 
When k = 0, we observe that all blocks yield the same fractionfl(fx - x + 
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THE COMBMATORIAL FACTORS 217 

1 )  of proper sequences, so that 4 = 1, A ,  = A2 = . . . 0, and Wx,o/Cx,o = 

When k = 1 (and f 2 3) there will be two types of blocks and Eq. 28 
J(fx - x + I ) . t  

becomes 

In order to calculate & and Al we consider an arbitrary sequence of 
x - 1 successes andfx - 2x + I “non-successes’’ of which one is a double 
failure and fx - 2x are single failures. If we treat all “non-successes” as 
single failures, a bracketing procedure can be applied as in Section 1. There 
will be found (f - 2) ( x  - 1) non-successes within brackets, andf- 1 non- 
successes outside of brackets. If we now generate a set of f x  - 2x + 1 
sequences, each corresponding to placing the double failure in one of the 
non-success positions in the sequence, exactlyf- I sequences in this set will 
have the double failure in one of the special positionsourside of the brackets. 
Each of thesef - I sequences will give rise to a block of cyclic permutations 
which will yield exactly f - 1 proper sequences, i.e. one per unneutralized 
failure. The remaining (f - 2) (x - 1) sequences correspond to the double 
failure being placed in one of the positions within the brackets. These 
sequences contain an additional unneutralized failure (or a half-neutralized 
double failure) and therefore will yield blocks of cyclic permutations which 
yield one additional proper sequence for a total off: Therefore, 4 = 
( f -  2)(x - I)/(jx - 2x + 1) and A1 = (f- I)/(fx - 2x + 1). Substituting 
these values in Eq. 29, we obtain 

(30) -- W,.I Jf- 2)(x - 1 )  + (f- 1Nf- 1 )  - - fU- 2)x + 1 
( f x  - x)( fx - 2x + I ) ’  GI 

so that 

( f x  - x) ( fx  - 2x + 1 )  

[f(f- 2)x t l](fx - x - I ) !  
(x - l)!(fx - 2x t l ) !  

’ WX,l = 

Unfortunately, for k > 1 the combinatorial problem in deriving the A’s in 
Eq. 28 becomes rather complicated. We are left, however, with a lower and 
upper bound on Wx,k. Combining Eqs. 27 and 28, and noting that the numer- 
ator of Eq. 28 has the lower boundf - I and the upper bound I, we obtain: 

(f- O ( f x  - x - k ) !  f ( f x  - x - k ) !  
(x - l ) !  k ! ( f x  - 2x + 2 - 2k)! ’  < wx,k < 

(X - I ) !  k ! ( f x  - 2~ + 2 - 2k)! 

?The quantities pertaining to ringless x-men, WX,o and C,,, coincide with thosedesignatd 
respectively W, and C, in Section 2. 
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Since the upper and lower bound differ only by the factor-i, f which cannot 
f-1 

be greater than two, the above inequality offers a potentially useful estimate 
Of w x , k *  

THE EXPECTED NUMBER OF x,k-MERS, N x , k  

In order to derive the limiting distribution equation for polymers with 
rings we have to make some assumption about the relative probability of 
occurrence of ring-closures. For example, if the probability of a site being 
non-bonded is 1 - a, the probability of it being bonded is a. the probability 
that a site has reacted and has formed a ring is ap and the probability that it 
has reacted but has not formed a ring is a( 1 - p ) ,  then, if we assume that all 
the above probabilities are independent of the size of the polymert or its 
previous history, the probability P x , k  that a residue selected at random 
belongs to an x, k-mer (which equals weight fraction of x, k-men) must be 

(33) P x . k  = W , , k ( a p ) ' [ a ( l  - p)]'-'(I - a)'x-2x+2-24 

For the expected number of x, k-mers, N x , k ,  we obtain 

(34) 

where the factor w x , k  in Eqs. 33 and 34 is given within a factor of two by the 
inequality 32. 

For a system which has condensed by random bond formation without 
restrictions, the probability p is of the order l/No. Thus, in the limit of 
No -+ m we obtain the result that P x , k  + 0 for anyfinife x ,  unless k = 0. This 
coincides with the deductions in Appendix I of Ref. 6 .  
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